Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38574248

RESUMO

Background and Aims: Cannabigerol (CBG) is a nonintoxicating cannabinoid synthesized in the Cannabis sativa plant that is incorporated into dietary supplements. This study investigated the influence of dietary fat and an emulsified delivery vehicle on CBG pharmacokinetics (PKs) after oral ingestion by adults. Materials and Methods: Consented participants were enrolled in a double-crossover pilot study and were blinded to the delivery vehicle type (isolate or emulsification) and isocaloric meal condition (low-fat=<5 g fat/meal or high-fat [HF]=>30 g fat/meal). The concentration of CBG in human plasma was measured after a single 25 mg dose of CBG using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PK parameters were calculated using noncompartmental analysis. Results: The PKs of the two delivery systems (emulsified vs. non-emulsified) were significantly impacted by the HF meal condition. Participants in the HF meal group exhibited significantly higher area under the plasma concentration time curve from time 0 to last quantifiable value, maximum concentration, and terminal half-life. Participants in the HF meal group also had a significantly lower terminal elimination rate constant and time to maximum concentration (Tmax), in addition to decreased Tmax variation. The threshold for bioequivalence between conditions was not met. An exploratory aim correlated anthropometric measures and previous day's dietary intake on PK parameters which yielded inconsistent results across dietary fat conditions. Conclusions: In aggregate, dietary fat had a greater effect on CBG PKs than the emulsified delivery vehicle. This supports accounting for dietary intake in development of therapeutics and administration guidelines for orally delivered CBG.

2.
Curr Dev Nutr ; 7(10): 101972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37786751

RESUMO

Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.

3.
Foods ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37628115

RESUMO

Kombucha is a fermented tea beverage consumed for its probiotics and functional properties. It has a unique sensory profile driven by the properties of tea polyphenols and fermentation products, including organic acids. Fermentation temperature and sucrose content affect the fermentation process and the production of organic acids; yet less is known about their impacts on the sensory profile and consumer acceptance. Thus, we aimed to examine the impact of sucrose concentration and fermentation temperature on sensory attributes and liking. For this study, kombucha tea was fermented at three different concentrations of sucrose and fermented at two temperatures for 11 days. Fermentation was monitored by pH, brix, and titratable acidity, and consumers (n = 111) evaluated the kombucha for sensory attributes and overall liking. The fermentation temperature resulted in significant differences in titratable acidity, with higher temperatures producing more organic acids, resulting in higher astringency, and suppressed sweetness. The lower fermentation was reported as significantly more liked, with no difference in liking between the 7.5% and 10% sucrose kombucha samples. Fermentation temperature had the greatest impact on the sensory profile rather than sucrose concentration, which had a greater effect on the fermentation rate and production organic acids.

4.
Gut Microbes ; 15(2): 2244721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609905

RESUMO

Bifidobacterium longum subsp. infantis (B. infantis) utilizes oligosaccharides secreted in human milk as a carbohydrate source. These human milk oligosaccharides (HMOs) integrate the nitrogenous residue N-acetylglucosamine (NAG), although HMO nitrogen utilization has not been described to date. Herein, we characterize the B. infantis nitrogen utilization phenotype on two NAG-containing HMO species, LNT and LNnT. This was characterized through in vitro growth kinetics, incorporation of isotopically labeled NAG nitrogen into the proteome, as well as modulation of intracellular 2-oxoglutarate levels while utilizing HMO nitrogen. Further support is provided by comparative transcriptomics and proteomics that identified global regulatory networks deployed during HMO nitrogen utilization. The aggregate data demonstrate that B. infantis strains utilize HMO nitrogen with the potential to significantly impact fundamental and clinical studies, as well as enable applications.


Assuntos
Bifidobacterium longum subspecies infantis , Microbioma Gastrointestinal , Humanos , Acetilglucosamina , Leite Humano , Oligossacarídeos , Nitrogênio
5.
Am J Clin Nutr ; 117 Suppl 1: S28-S42, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173059

RESUMO

Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.


Assuntos
Aleitamento Materno , Leite Humano , Feminino , Lactente , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente
6.
Mol Nutr Food Res ; 67(11): e2200851, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938958

RESUMO

SCOPE: Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS: Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION: Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Lactente , Leite Humano/química , Bifidobacterium longum subspecies infantis/metabolismo , Oligossacarídeos/metabolismo
7.
Gut Microbes ; 15(1): 2192546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967532

RESUMO

Human milk guides the structure and function of microbial commensal communities that colonize the nursing infant gut. Indigestible molecules dissolved in human milk establish a microbiome often dominated by bifidobacteria capable of utilizing these substrates. Interestingly, urea accounts for ~15% of total human milk nitrogen, representing a potential reservoir for microbiota that may be salvaged for critical metabolic operations during lactation and neonatal development. Accordingly, B. infantis strains are competent for urea nitrogen utilization, constituting a previously hypothetical phenotype in commensal bacteria hosted by humans. Urease gene expression, downstream nitrogen metabolic pathways, and enzymatic activity are induced during urea utilization to yield elevated ammonia concentrations. Moreover, biosynthetic networks relevant to infant nutrition and development are transcriptionally responsive to urea utilization including branched chain and other essential amino acids. Importantly, isotopically labeled urea nitrogen is broadly distributed throughout the expressed B. infantis proteome. This incisively demonstrates that the previously inaccessible urea nitrogen is incorporated into microbial products available for infant host utilization. In aggregate, B. infantis possesses the requisite phenotypic foundation to participate in human milk urea nitrogen recycling within its infant host and thus may be a key contributor to nitrogen homeostasis early in life.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Recém-Nascido , Feminino , Lactente , Humanos , Leite Humano/química , Ureia/análise , Ureia/metabolismo , Oligossacarídeos/metabolismo , Bifidobacterium longum subspecies infantis
9.
J Allergy Clin Immunol ; 150(3): 523-534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075638

RESUMO

Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aleitamento Materno , Feminino , Humanos , Lactente , Fórmulas Infantis , Leite Humano
10.
Cancer Epidemiol Biomarkers Prev ; 30(8): 1575-1581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34108140

RESUMO

BACKGROUND: White blood cell (WBC) DNA may contain methylation patterns that are associated with subsequent breast cancer risk. Using a high-throughput array and samples collected, on average, 1.3 years prior to diagnosis, a case-cohort analysis nested in the prospective Sister Study identified 250 individual CpG sites that were differentially methylated between breast cancer cases and noncases. We examined five of the top 40 CpG sites in a case-control study nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort. METHODS: We investigated the associations between prediagnostic WBC DNA methylation in 297 breast cancer cases and 297 frequency-matched controls. Two WBC DNA specimens from each participant were used: a proximate sample collected 1 to 2.9 years and a distant sample collected 4.2-7.3 years prior to diagnosis in cases or the comparable timepoints in controls. WBC DNA methylation level was measured using targeted bisulfite amplification sequencing. We used logistic regression to obtain ORs and 95% confidence intervals (CI). RESULTS: A one-unit increase in percent methylation in ERCC1 in proximate WBC DNA was associated with increased breast cancer risk (adjusted OR = 1.29; 95% CI, 1.06-1.57). However, a one-unit increase in percent methylation in ERCC1 in distant WBC DNA was inversely associated with breast cancer risk (adjusted OR = 0.83; 95% CI, 0.69-0.98). None of the other ORs met the threshold for statistical significance. CONCLUSIONS: There was no convincing pattern between percent methylation in the five CpG sites and breast cancer risk. IMPACT: The link between prediagnostic WBC DNA methylation marks and breast cancer, if any, is poorly understood.


Assuntos
Neoplasias da Mama/genética , Metilação de DNA , Leucócitos , Idoso , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Estudos Prospectivos
11.
Microorganisms ; 9(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810188

RESUMO

Plant-based foods contain bioactive compounds such as polyphenols that resist digestion and potentially benefit the host through interactions with their resident microbiota. Based on previous observations, we hypothesized that the probiotic Lactobacillus plantarum interacts with cranberry polyphenols and dietary oligosaccharides to synergistically impact its physiology. In this study, L. plantarum ATCC BAA-793 was grown on dietary oligosaccharides, including cranberry xyloglucans, fructooligosaccharides, and human milk oligosaccharides, in conjunction with proanthocyanidins (PACs) extracted from cranberries. As a result, L. plantarum exhibits a differential physiological response to cranberry PACs dependent on the carbohydrate source and polyphenol fraction introduced. Of the two PAC extracts evaluated, the PAC1 fraction contains higher concentrations of PACs and increased growth regardless of the oligosaccharide, whereas PAC2 positively modulates its growth during xyloglucan metabolism. Interestingly, fructooligosaccharides (FOS) are efficiently utilized in the presence of PAC1, as this L. plantarum strain does not utilize this substrate typically. Relative to glucose, oligosaccharide metabolism increases the ratio of secreted acetic acid to lactic acid. The PAC2 fraction differentially increases this ratio during cranberry xyloglucan fermentation compared with PAC1. The global transcriptome links the expression of putative polyphenol degradation genes and networks and metabolic phenotypes.

13.
J Perinatol ; 41(4): 850-859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32873904

RESUMO

OBJECTIVE: This study evaluated the presence and the levels of antibodies reactive to SARS-CoV-2 S1 and S2 subunits (S1 + S2), and nucleocapsid protein. STUDY DESIGN: The levels of SARS-CoV-2 S1 + S2- and nucleocapsid-reactive SIgM/IgM, IgG and SIgA/IgA were measured in human milk samples from 41 women during the COVID-19 pandemic (2020-HM) and from 16 women 2 years prior to the outbreak (2018-HM). RESULTS: SARS-CoV-2 S1 + S2-reactive SIgA/IgA, SIgM/IgM and IgG were detected in 97.6%, 68.3% and 58.5% in human milk whereas nucleocapsid-reactive antibodies were detected in 56.4%, 87.2% and 46.2%, respectively. S1 + S2-reactive IgG was higher in milk from women that had symptoms of viral respiratory infection(s) during the last year than in milk from women without symptom. S1 + S2- and nucleocapsid-reactive IgG were higher in the 2020-HM group compared to the 2018-HM group. CONCLUSIONS: The presence of SARS-CoV-2-reactive antibodies in human milk could provide passive immunity to breastfed infants and protect them against COVID-19 diseases.


Assuntos
Anticorpos Neutralizantes/análise , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Leite Humano/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/imunologia , Feminino , Humanos , Imunidade Materno-Adquirida , Imunoglobulina A/análise , Imunoglobulina G/análise , Imunoglobulina M/análise , Recém-Nascido , Subunidades Proteicas , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Estados Unidos/epidemiologia
14.
Front Nutr ; 7: 583397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330584

RESUMO

Human milk oligosaccharides (HMOs) enrich beneficial bifidobacteria in the infant gut microbiome which produce molecules that impact development and physiology. 2'fucosyllactose (2'FL) is a highly abundant fucosylated HMO which is utilized by Bifidobacterium longum subsp. infantis, despite limited scientific understanding of the underlying mechanism. Moreover, there is not a current consensus on whether free fucose could be metabolized when not incorporated in a larger oligosaccharide structure. Based on metabolic and genomic analyses, we hypothesize that B. infantis catabolizes both free fucose and fucosyl oligosaccharide residues to produce 1,2-propanediol (1,2-PD). Accordingly, systems-level approaches including transcriptomics and proteomics support this metabolic path. Co-fermentation of fucose and limiting lactose or glucose was found to promote significantly higher biomass and 1,2-PD concentrations than individual substrates, suggesting a synergistic effect. In addition, and during growth on 2'FL, B. infantis achieves significantly higher biomass corresponding to increased 1,2-PD. These findings support a singular fucose catabolic pathway in B. infantis that is active on both free and HMO-derived fucose and intimately linked with central metabolism. The impact of fucose and 2'FL metabolism on B. infantis physiology provides insight into the role of fucosylated HMOs in influencing host- and microbe-microbe interactions within the infant gut microbiome.

15.
Microorganisms ; 8(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861401

RESUMO

Bifidobacterium longum colonizes mammalian gastrointestinal tracts where it could metabolize host-indigestible oligosaccharides. Although B. longum strains are currently segregated into three subspecies that reflect common metabolic capacities and genetic similarity, heterogeneity within subspecies suggests that these taxonomic boundaries may not be completely resolved. To address this, the B. longum pangenome was analyzed from representative strains isolated from a diverse set of sources. As a result, the B. longum pangenome is open and contains almost 17,000 genes, with over 85% of genes found in ≤28 of 191 strains. B. longum genomes share a small core gene set of only ~500 genes, or ~3% of the total pangenome. Although the individual B. longum subspecies pangenomes share similar relative abundances of clusters of orthologous groups, strains show inter- and intrasubspecies differences with respect to carbohydrate utilization gene content and growth phenotypes.

16.
Food Funct ; 10(9): 5521-5530, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418448

RESUMO

The gut microbiota plays a critical role in human health. Diets could modulate the gut microbiota, which in turn may contribute to altered health outcomes by way of changing the relative risk of chronic diseases. Limonin, widely found in citrus fruits, has been reported to possess multiple beneficial health effects. However, the gastrointestinal fate of limonin and its effect on gut microbiota remain unknown. Herein, mice were fed a diet containing 0.05% limonin (w/w) for 9 weeks. Liquid chromatography-mass spectrum analysis showed that limonin was concentrated along the gastrointestinal tract and reached 523.14 nmol g-1 in the colon lumen. Compared to control mice, colonic microbiota richness was significantly increased by limonin. Gut microbiota community was also clearly distinct from the control group as shown by Principle Coordinate Analysis. Additionally, the relative abundance of 22 genera (relative abundance >0.1%) was altered significantly. Among these, generally regarded probiotics (Lactobacillus and Bifidobacterium) were reduced, which was not due to direct inhibitory effect of limonin. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, amino acid metabolism, lipid, metabolism and immune system function were predicted to be upregulated, and immune system disease and infectious disease markers were predicted to be suppressed dramatically by limonin based on gut microbiota composition. Within the infectious disease category, bacterial toxin and Staphylococcus aureus infection markers were suppressed significantly with limonin treatment. Collectively, our study provides the first line of evidence that oral intake of limonin could shift gut microbiota composition and its functions, which warrants further investigation to determine its implication in human health.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Limoninas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo/metabolismo , Colo/microbiologia , Feminino , Masculino , Camundongos
17.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737347

RESUMO

Bifidobacteria are commensals of the animal gut and are commonly found in mammals, birds, and social insects. Specifically, strains of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudolongum are widely distributed in the mammalian gut. In this context, we investigated the genetic variability and metabolic abilities of the B. pseudolongum taxon, whose genomic characterization has so far not received much attention. Phylogenomic analysis of the genome sequences of 60 B. pseudolongum strains revealed that B. pseudolongum subsp. globosum and B. pseudolongum subsp. pseudolongum may actually represent two distinct bifidobacterial species. Furthermore, our analysis highlighted metabolic differences between members of these two subspecies. Moreover, comparative analyses of genetic strategies to prevent invasion of foreign DNA revealed that the B. pseudolongum subsp. globosum group exhibits greater genome plasticity. In fact, the obtained findings indicate that B. pseudolongum subsp. globosum is more adaptable to different ecological niches such as the mammalian and avian gut than is B. pseudolongum subsp. pseudolongumIMPORTANCE Currently, little information exists on the genetics of the B. pseudolongum taxon due to the limited number of sequenced genomes belonging to this species. In order to survey genome variability within this species and explore how members of this taxon evolved as commensals of the animal gut, we isolated and decoded the genomes of 51 newly isolated strains. Comparative genomics coupled with growth profiles on different carbohydrates has further provided insights concerning the genotype and phenotype of members of the B. pseudolongum taxon.


Assuntos
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Variação Genética , Genoma Bacteriano , Genômica , Animais , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , DNA Bacteriano/genética , Ecossistema , Microbioma Gastrointestinal/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Simbiose
18.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30171008

RESUMO

Fermented vegetables are highly popular internationally in part due to their enhanced nutritional properties, cultural history, and desirable sensorial properties. In some instances, fermented foods provide a rich source of the beneficial microbial communities that could promote gastrointestinal health. The indigenous microbiota that colonize fermentation facilities may impact food quality, food safety, and spoilage risks and maintain the nutritive value of the product. Here, microbiomes within sauerkraut production facilities were profiled to characterize variance across surfaces and to determine the sources of these bacteria. Accordingly, we used high-throughput sequencing of the 16S rRNA gene in combination with whole-genome shotgun analyses to explore biogeographical patterns of microbial diversity and assembly within the production facility. Our results indicate that raw cabbage and vegetable handling surfaces exhibit more similar microbiomes relative to the fermentation room, processing area, and dry storage surfaces. We identified biomarker bacterial phyla and families that are likely to originate from the raw cabbage and vegetable handling surfaces. Raw cabbage was identified as the main source of bacteria to seed the facility, with human handling contributing a minor source of inoculation. Leuconostoc and Lactobacillaceae dominated all surfaces where spontaneous fermentation occurs, as these taxa are associated with the process. Wall, floor, ceiling, and barrel surfaces host unique microbial signatures. This study demonstrates that diverse bacterial communities are widely distributed within the production facility and that these communities assemble nonrandomly, depending on the surface type.IMPORTANCE Fermented vegetables play a major role in global food systems and are widely consumed by various global cultures. In this study, we investigated an industrial facility that produces spontaneous fermented sauerkraut without the aid of starter cultures. This provides a unique system to explore and track the origins of an "in-house" microbiome in an industrial environment. Raw vegetables and the surfaces on which they are handled were identified as the likely source of bacterial communities rather than human contamination. As fermented vegetables increase in popularity on a global scale, understanding their production environment may help maintain quality and safety goals.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Manipulação de Alimentos/instrumentação , Microbiota , Verduras/microbiologia , Bactérias/classificação , Bactérias/genética , Brassica/metabolismo , Brassica/microbiologia , DNA Bacteriano/genética , Fermentação , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Verduras/metabolismo
19.
Genome Announc ; 6(25)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930064

RESUMO

The draft genome sequence of an isolate identified as Bifidobacterium longum is communicated herein. This strain was isolated from the feces of a 1-week-old Holstein dairy cow. The draft genome of this Bifidobacterium longum isolate is 2.39 Mb in length, with a G+C content of 60.1%.

20.
Front Nutr ; 5: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900174

RESUMO

Human milk contains a high concentration of indigestible oligosaccharides, which likely mediated the coevolution of the nursing infant with its gut microbiome. Specifically, Bifidobacterium longum subsp. infantis (B. infantis) often colonizes the infant gut and utilizes these human milk oligosaccharides (HMOs) to enrich their abundance. In this study, the physiology and mechanisms underlying B. infantis utilization of two HMO isomers lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) was investigated in addition to their carbohydrate constituents. Both LNT and LNnT utilization induced a significant shift in the ratio of secreted acetate to lactate (1.7-2.0) in contrast to the catabolism of their component carbohydrates (~1.5). Inefficient metabolism of LNnT prompts B. infantis to shunt carbon toward formic acid and ethanol secretion. The global transcriptome presents genomic features differentially expressed to catabolize these two HMO species that vary by a single glycosidic linkage. Furthermore, a measure of strain-level variation exists between B. infantis isolates. Regardless of strain, inefficient HMO metabolism induces the metabolic shift toward formic acid and ethanol production. Furthermore, bifidobacterial metabolites reduced LPS-induced inflammation in a cell culture model. Thus, differential metabolism of milk glycans potentially drives the emergent physiology of host-microbial interactions to impact infant health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...